1#
面对信息社会中数据和数据库的爆炸式增长,人们分析数据和从中提取有用信息的能力,远远不能满足实际需要。但目前所能做到的只是对数据库中已有的数据进行存储、查询、统计等功能,但它却无法发现这些数据中存在的关系和规则,更不能根据现有的数据预测未来的发展趋势。这种现象产生的主要原因就是缺乏挖掘数据背后隐藏的知识的有力手段,从而导致“数据爆炸但知识贫乏”的现象。数据挖掘就是为迎合这种要求而产生并迅速发展起来的,可用于开发信息资源的一种新的数据处理技术。
  数据是进行信息化处理的基础,从数据中获取重要信息并将其转化为实际的生产和应用效果变得越来越广泛,也推动着社会生产和市场经济的快速发展。尽管现代的数据库技术已经相当优秀能够使我们使我们很容易的存储大量的数据流,但还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。以往,我们通常由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则来获取有用信息。但由于专家所拥有知识的有局限性,所以对于获取的信息是否完全表达了数据本身还不是很确定。传统的知识获取技术已经无法满足巨型数据仓库,因此数据挖掘技术的出现就完美的解决了这些问题。
  数据挖掘是从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程,它是一门涉及面很广的交叉性新兴学科,涉及到数据库、人工智能、数理统计、可视化、并行计算等领域。数据挖掘是一种新的信息处理技术,其主要特点是对数据库中的大量数据进行抽取、转换、分析和其他模型化处理,并从中提取辅助决策的关键性数据。数据挖掘是知识发现过程中的一个特定步骤,它用专门算法从数据中抽取模式(patterns),它并不是用规范的数据库查询语言进行查询,而是对查询的内容进行模式的总结和内在规律的搜索。传统的查询和报表处理只是得到事件发生的结果,并没有深入研究发生的原 因,而数据挖掘则主要了解发生的原因,并且以一定的置信度对未来进行预测,用来为决策行为提供有利的支持。
  北京理工大学大数据搜索与挖掘实验室张华平主任研发的NLPIR-Parser大数据语义智能分析技术是对语法、词法和语义的综合应用。NLPIR大数据语义智能分析平台是根据中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,并针对互联网内容处理的全技术链条的共享开发平台。
  NLPIR-Parser大数据语义智能分析平台主要有精准采集、文档转化、新词发现、批量分词、语言统计、文本聚类、文本分类、摘要实体、智能过滤、情感分析、文档去重、全文检索、编码转换等十余项功能模块,平台提供了客户端工具,云服务与二次开发接口等多种产品使用形式。各个中间件API可以无缝地融合到客户的各类复杂应用系统之中,可兼容Windows,Linux, Android,Maemo5, FreeBSD等不同操作系统平台,可以供Java,Python,C,C#等各类开发语言使用。
  随着云计算、移动互联网以及物联网等技术的发展和完善,相信大数据在各个领域的应用会越来越广泛和深入,相关的研究也会越来越全面和深入,在信息管理领域,综合应用数据挖掘技术和人工智能技术,获取用户知识、文献知识等各类知识,将是实现知识检索和知识管理发展的必经之路。